2022
DOI: 10.48550/arxiv.2205.15266
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

(Spectral) Chebyshev collocation methods for solving differential equations

Abstract: Recently, the efficient numerical solution of Hamiltonian problems has been tackled by defining the class of energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). Their derivation relies on the expansion of the vector field along the Legendre orthonormal basis. Interestingly, this approach can be extended to cope with other orthonormal bases and, in particular, we here consider the case of the Chebyshev polynomial basis. The corresponding Runge-Kutta methods were previously ob… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?