Complex real-world phenomena are often modeled as dynamical systems on networks. In many cases of interest, the spectrum of the underlying graph Laplacian sets the system stability and ultimately shapes the matter or information flow. This motivates devising suitable strategies, with rigorous mathematical foundation, to generate Laplacian that possess prescribed spectra. In this paper, we show that a weighted Laplacians can be constructed so as to exactly realize a desired complex spectrum. The method configures as a non trivial generalization of existing recipes which assume the spectra to be real. Applications of the proposed technique to (i) a network of Stuart-Landau oscillators and (ii) to the Kuramoto model are discussed. Synchronization can be enforced by assuming a properly engineered, signed and weighted, adjacency matrix to rule the pattern of pairing interactions.