The basic expressions for the differential nuclear bremsstrahlung cross section at high electron energy, as derived under different theoretical approaches and approximations to quantum coherence effects, are compared. The Baier-Katkov treatment is reformulated to allow introduction of the same value of the radiation length in all calculations. A dedicated Monte Carlo code is employed for obtaining photon energy spectra in the framework of the Baier-Katkov approach taking into account multi-photon emission, attenuation by pair production, and pile-up with photons from the background. The results of Monte Carlo simulations for both the Migdal and Baier-Katkov descriptions are compared to all available data that show the Landau-Pomeranchuk-Migdal (LPM) suppression. The issue of the sensitivity of the experiments to the difference of the two approaches is investigated.