For Riemannian submersions with fibers of basic mean curvature, we compare the spectrum of the total space with the spectrum of a Schrödinger operator on the base manifold. Exploiting this concept, we study submersions arising from actions of Lie groups. In this context, we extend the state-of-the-art results on the bottom of the spectrum under Riemannian coverings. As an application, we compute the bottom of the spectrum and the Cheeger constant of connected, amenable Lie groups.