We study spectral properties of perturbed discrete Laplacians on two-dimensional Archimedean tilings. The perturbation manifests itself in the introduction of non-trivial edge weights. We focus on the two lattices on which the unperturbed Laplacian exhibits flat bands, namely the $$(3.6)^2$$
(
3.6
)
2
Kagome lattice and the $$(3.12^2)$$
(
3
.
12
2
)
“Super-Kagome” lattice. We characterize all possible choices for edge weights which lead to flat bands. Furthermore, we discuss spectral consequences such as the emergence of new band gaps. Among our main findings is that flat bands are robust under physically reasonable assumptions on the perturbation, and we completely describe the perturbation-spectrum phase diagram. The two flat bands in the Super-Kagome lattice are shown to even exhibit an “all-or-nothing” phenomenon in the sense that there is no perturbation, which can destroy only one flat band while preserving the other.