“…In [8], [7], [3], [24], [19] various sufficient conditions of continuity for representations of locally compact groups on Banach spaces, or more generally in Banach algebras, are given. In [8], [7], [3] these conditions are of spectral nature. To be more precise, in [8], it is proved that if G is a locally compact abelian group, A a unital Banach algebra and θ : G → A a locally bounded (norm bounded on compact subsets of G) representation, then the continuity of θ is equivalent to the a priori weaker condition ρ(θ(g) − I) → 0 as g → e where ρ denotes the spectral radius in A and e is the unit of G. (This condition is often called spectral continuity for θ.)…”