Abstract. We study Schrödinger operator H = −∆ + V (x) in dimension two, V (x) being a limit-periodic potential. We prove that the spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves e i k, x at the high energy region. Second, the isoenergetic curves in the space of momenta k corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure). Third, the spectrum corresponding to the eigenfunctions (the semiaxis) is absolutely continuous.