2020
DOI: 10.30970/ms.54.1.91-97
|View full text |Cite
|
Sign up to set email alerts
|

Spectral radius of S-essential spectra

Abstract: In this paper, we study the spectral radius of some S-essential spectra of a bounded linear operator defined on a Banach space. More precisely, via the concept of measure of noncompactness,we show that for any two bounded linear operators $T$ and $S$ with $S$ non zero and non compact operator the spectral radius of the S-Gustafson, S-Weidmann, S-Kato and S-Wolf essential spectra are given by the following inequalities\begin{equation}\dfrac{\beta(T)}{\alpha(S)}\leq r_{e, S}(T)\leq \dfrac{\alpha(T)}{\beta(S)},\e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 12 publications
0
0
0
Order By: Relevance