Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Water is the most important resource for living on planet Earth, covering more than 70% of its surface. The oceans represent more than 97% of the planet total water and they are where more than the 99.5% of the living beings are concentrated. A great number of ecosystems depend on the health of these oceans; their study and protection are necessary. Large datasets over long periods of time and over wide geographical areas can be required to assess the health of aquatic ecosystems. The funding needed for data collection is considerable and limited, so it is important to look at new cost-effective ways of obtaining and processing marine environmental data. The feasible solution at present is to develop observational infrastructures that may increase significantly the conventional sampling capabilities. In this study we promote to achieve this solution with the implementation of Citizen Observatories, based on volunteer participation. Citizen observatories are platforms that integrate the latest information technologies to digitally connect citizens, improving observation skills for developing a new type of research known as Citizen Science. Citizen science has the potential to increase the knowledge of the environment, and aquatic ecosystems in particular, through the use of people with no specific scientific training to collect and analyze large data sets. We believe that citizen science based tools -open source software coupled with low-cost do-it-yourself hardware- can help to close the gap between science and citizens in the oceanographic field. As the public is actively engaged in the analysis of data, the research also provides a strong avenue for public education. This is the objective of this thesis, to demonstrate how open source software and low-cost do-it-yourself hardware are effectively applied to oceanographic research and how can it develop into citizen science. We analyze four different scenarios where this idea is demonstrated: an example of using open source software for video analysis where lobsters were monitored; a demonstration of using similar video processing techniques on in-situ low-cost do-it-yourself hardware for submarine fauna monitoring; a study using open source machine learning software as a method to improve biological observations; and last but not least, some preliminar results, as proof of concept, of how manual water sampling could be replaced by low-cost do-it-yourself hardware with optical sensors. L’aigua és el recurs més important per la vida al planeta Terra, cobrint més del 70% de la seva superfície. Els oceans representen més del 70% de tota l'aigua del planeta, i és on estan concentrats més del 99.5% dels éssers vius. Un gran nombre d'ecosistemes depenen de la salut d'aquests oceans; el seu estudi i protecció són necessaris. Grans conjunts de dades durant llargs períodes de temps i al llarg d’amples àrees geogràfiques poden ser necessaris per avaluar la salut dels ecosistemes aquàtics. El finançament necessari per aquesta recol·lecció de dades és considerable però limitat, i per tant és important trobar noves formes més rendibles d’obtenir i processar dades mediambientals marines. La solució factible actualment és la de desenvolupar infraestructures observacionals que puguin incrementar significativament les capacitats de mostreig convencionals. En aquest estudi promovem que es pot assolir aquesta solució amb la implementació d’Observatoris Ciutadans, basats en la participació de voluntaris. Els observatoris ciutadans són plataformes que integren les últimes tecnologies de la informació amb ciutadans digitalment connectats, millorant les capacitats d’observació, per desenvolupar un nou tipus de recerca coneguda com a Ciència Ciutadana. La ciència ciutadana té el potencial d’incrementar el coneixement del medi ambient, i dels ecosistemes aquàtics en particular, mitjançant l'ús de persones sense coneixement científic específic per recollir i analitzar grans conjunts de dades. Creiem que les eines basades en ciència ciutadana -programari lliure juntament amb maquinari de baix cost i del tipus "fes-ho tu mateix" (do-it-yourself en anglès)- poden ajudar a apropar la ciència del camp oceanogràfic als ciutadans. A mesura que el gran públic participa activament en l'anàlisi de dades, la recerca esdevé també una nova via d’educació pública. Aquest és l’objectiu d’aquesta tesis, demostrar com el programari lliure i el maquinari de baix cost "fes-ho tu mateix" s’apliquen de forma efectiva a la recerca oceanogràfica i com pot desenvolupar-se cap a ciència ciutadana. Analitzem quatre escenaris diferents on es demostra aquesta idea: un exemple d’ús de programari lliure per anàlisi de vídeos de monitoratge de llagostes; una demostració utilitzant tècniques similars de processat de vídeo en un dispositiu in-situ de baix cost "fes-ho tu mateix" per monitoratge de fauna submarina; un estudi utilitzant programari lliure d’aprenentatge automàtic (machine learning en anglès) com a mètode per millorar observacions biològiques; i finalment uns resultats preliminars, com a prova de la seva viabilitat, de com un mostreig manual de mostres d’aigua podria ser reemplaçat per maquinari de baix cost "fes-ho tu mateix" amb sensors òptics.
Water is the most important resource for living on planet Earth, covering more than 70% of its surface. The oceans represent more than 97% of the planet total water and they are where more than the 99.5% of the living beings are concentrated. A great number of ecosystems depend on the health of these oceans; their study and protection are necessary. Large datasets over long periods of time and over wide geographical areas can be required to assess the health of aquatic ecosystems. The funding needed for data collection is considerable and limited, so it is important to look at new cost-effective ways of obtaining and processing marine environmental data. The feasible solution at present is to develop observational infrastructures that may increase significantly the conventional sampling capabilities. In this study we promote to achieve this solution with the implementation of Citizen Observatories, based on volunteer participation. Citizen observatories are platforms that integrate the latest information technologies to digitally connect citizens, improving observation skills for developing a new type of research known as Citizen Science. Citizen science has the potential to increase the knowledge of the environment, and aquatic ecosystems in particular, through the use of people with no specific scientific training to collect and analyze large data sets. We believe that citizen science based tools -open source software coupled with low-cost do-it-yourself hardware- can help to close the gap between science and citizens in the oceanographic field. As the public is actively engaged in the analysis of data, the research also provides a strong avenue for public education. This is the objective of this thesis, to demonstrate how open source software and low-cost do-it-yourself hardware are effectively applied to oceanographic research and how can it develop into citizen science. We analyze four different scenarios where this idea is demonstrated: an example of using open source software for video analysis where lobsters were monitored; a demonstration of using similar video processing techniques on in-situ low-cost do-it-yourself hardware for submarine fauna monitoring; a study using open source machine learning software as a method to improve biological observations; and last but not least, some preliminar results, as proof of concept, of how manual water sampling could be replaced by low-cost do-it-yourself hardware with optical sensors. L’aigua és el recurs més important per la vida al planeta Terra, cobrint més del 70% de la seva superfície. Els oceans representen més del 70% de tota l'aigua del planeta, i és on estan concentrats més del 99.5% dels éssers vius. Un gran nombre d'ecosistemes depenen de la salut d'aquests oceans; el seu estudi i protecció són necessaris. Grans conjunts de dades durant llargs períodes de temps i al llarg d’amples àrees geogràfiques poden ser necessaris per avaluar la salut dels ecosistemes aquàtics. El finançament necessari per aquesta recol·lecció de dades és considerable però limitat, i per tant és important trobar noves formes més rendibles d’obtenir i processar dades mediambientals marines. La solució factible actualment és la de desenvolupar infraestructures observacionals que puguin incrementar significativament les capacitats de mostreig convencionals. En aquest estudi promovem que es pot assolir aquesta solució amb la implementació d’Observatoris Ciutadans, basats en la participació de voluntaris. Els observatoris ciutadans són plataformes que integren les últimes tecnologies de la informació amb ciutadans digitalment connectats, millorant les capacitats d’observació, per desenvolupar un nou tipus de recerca coneguda com a Ciència Ciutadana. La ciència ciutadana té el potencial d’incrementar el coneixement del medi ambient, i dels ecosistemes aquàtics en particular, mitjançant l'ús de persones sense coneixement científic específic per recollir i analitzar grans conjunts de dades. Creiem que les eines basades en ciència ciutadana -programari lliure juntament amb maquinari de baix cost i del tipus "fes-ho tu mateix" (do-it-yourself en anglès)- poden ajudar a apropar la ciència del camp oceanogràfic als ciutadans. A mesura que el gran públic participa activament en l'anàlisi de dades, la recerca esdevé també una nova via d’educació pública. Aquest és l’objectiu d’aquesta tesis, demostrar com el programari lliure i el maquinari de baix cost "fes-ho tu mateix" s’apliquen de forma efectiva a la recerca oceanogràfica i com pot desenvolupar-se cap a ciència ciutadana. Analitzem quatre escenaris diferents on es demostra aquesta idea: un exemple d’ús de programari lliure per anàlisi de vídeos de monitoratge de llagostes; una demostració utilitzant tècniques similars de processat de vídeo en un dispositiu in-situ de baix cost "fes-ho tu mateix" per monitoratge de fauna submarina; un estudi utilitzant programari lliure d’aprenentatge automàtic (machine learning en anglès) com a mètode per millorar observacions biològiques; i finalment uns resultats preliminars, com a prova de la seva viabilitat, de com un mostreig manual de mostres d’aigua podria ser reemplaçat per maquinari de baix cost "fes-ho tu mateix" amb sensors òptics.
La gestió sostenible dels ecosistemes marins requereix d'un millor coneixement de la distribució de certs paràmetres ecològics com les comunitats de fitoplàncton, inclosos aquells grups algals causants d'afloraments. La caracterització acurada dels patrons espacio-temporals de la biodiversitat del fitoplàncton és essencial per tal d'avaluar el paper de cada grup algal en l'ecosistema global marí i els cicles biogeoquímics. En l'intent d'abordar aquesta qüestió, observacions espectromètriques adquirides in situ i per teledetecció han demostrat proporcionar informació valuosa sobre la distribució de diversos components òpticament actius presents a l'aigua de mar, tant a escala local com global, i en particular, sobre l'estructura de les comunitats fitoplanctòniques. En aquest sentit, l'aparició de sensors òptics d'alta resolució espectral (hiperespectrals) ha augmentat les expectatives per discriminar la composició de les comunitats de fitoplàncton, permetent anar més enllà de l'estimació del pigment primari del fitoplàncton, la clorofil·la-a, utilitzat convencionalment com un indicador global de la biomassa i la producció primària de fitoplàncton ja que és un pigment comú a tots els grups taxonòmics. Aquesta tesi doctoral s'ha dut a terme amb l'objectiu de millorar la nostra capacitat d'extraure informació sobre l'estructura de les comunitats de fitoplàncton en l'oceà, mitjançant el desenvolupament i avaluació d'una nova aproximació basada en l'anàlisi de dades hiperespectrals. En particular, s'ha proposat una tècnica de classificació, on s'examinen les dissimilituds entre les signatures hiperespectrals de cada mostra d'aigua, i que ha estat aplicada en combinació amb l'espectroscopia derivativa, tècnica amb la qual s'exploren les característiques de la forma de l'espectre analitzat. Com a novetat, es proposa també una eina de validació per demostrar l'eficàcia d'aquesta nova tècnica de classificació. En el procés de validació es demostra que les classificacions obtingudes amb les dades òptiques i la metodologia proposada són molt semblants a les obtingudes amb dades basades en l'anàlisi de la composició pigmentària (utilitzant un cromatògraf líquid d'alta resolució, HPLC), tècnica habitualment utilitzada per la comunitat científica com a indicador de la composició de fitoplàncton. La viabilitat d'aquesta metodologia ha estat demostrada inicialment utilitzant una aproximació basada en simulacions, on la distribució del fitoplàncton està predeterminada i on s'han generat diferents escenaris lumínics d'aigües en mar obert i costaneres mitjançant un model de transferència radiativa. Per altra banda, escenaris reals de mar obert corresponents a diferents estacions en l'oceà Atlàntic han estat classificats satisfactòriament mitjançant les tècniques proposades, aplicades a dades hiperespectrals incloent espectres d'absorció i reflectància, així com els seus espectres derivats. Aquesta classificació ha servit per identificar una aplicació potencial de la metodologia proposada: l'establiment de diferents províncies bio-òptiques a partir de l'anàlisi de mesures hiperespectrals oceanogràfiques, donant lloc a l'examen de la seva rellevància biogeogràfica en comparació amb províncies ecològiques proposades prèviament en la literatura. Aquesta tesi conclou amb la confirmació de la hipòtesi principal: una millor discriminació de l'estructura i dinàmica de les comunitats de fitoplàncton és possible mitjançant l'ús d'observacions hiperespectrals oceanogràfiques. Cal destacar que l'aproximació proposada és en general aplicable a diferents conjunts de dades, més enllà de la composició pigmentària o dades òptiques obtingudes in situ també a dades obtingudes per teledetecció, dades biogeoquímiques i altres paràmetres hidrogràfics. Sustainable management of marine ecosystems requires a better knowledge about the space-time distribution and dynamics of ecological parameters such as phytoplankton communities, including critical bloom-forming algal groups. Better understanding of phytoplankton biodiversity and dynamics is essential in evaluating the role of each algal group in the global marine ecosystem and biogeochemical cycles. In attempting to address this question, in situ and remotely-sensed spectrometric optical observations have demonstrated to provide previously unavailable information regarding several optically active constituents in seawater at local and global scales, in particular, regarding phytoplankton community structure. In this sense, the advent of high spectral resolution (hyperspectral) optical sensors have raised new expectations about the possibilities of discriminating phytoplankton community composition in the ocean, beyond the estimation of only the primary pigment in phytoplankton, chlorophyll-a, a proxy for the phytoplankton biomass and primary production since it is common to all taxonomic groups. This PhD thesis has been carried out with the aim of improving our ability to extract information regarding phytoplankton community structure in the ocean by developing and evaluating a novel approach based on hyperspectral data analysis. In particular, a dissimilarity-based cluster technique, which accounts for complete spectral behaviour of hyperspectral data of each seawater sample, has been applied in combination with derivative spectroscopy, which exploits the spectral shape features of each analyzed spectrum. As a novelty, a validating tool has been proposed and proven useful to illustrate the effectiveness of the optical-based classification for discriminating different phytoplankton assemblages. This novel validation approach is based on the pigment composition analyzed in conjunction with concurrently obtained optical data, information which has been commonly used by the scientific community as a proxy for the phytoplankton composition. The feasibility of this methodology has initially been demonstrated using a simulation-based approach, i. e. using a radiative transfer modeling framework for open ocean and shallow coastal environments. In addition, different real open ocean environments corresponding to several stations in the eastern Atlantic Ocean have successfully been classified by applying the cluster analysis to different hyperspectral data sets including absorption and remote-sensing reflectance spectra and their second derivative spectra. This classification has served to identify a potential application of the proposed methodology: the establishment of different bio-optical provinces from the analysis of hyperspectral oceanographic observations, leading to examination of its biogeographical relevance by comparison to ecological provinces previously proposed in the literature. This thesis concludes by confirming the main hypothesis that discrimination of phytoplankton community structure and dynamics in the ocean can be enhanced while using hyperspectral oceanographic observations. It is noteworthy that the proposed approach is generally applicable to different data sets, besides in-situ pigment or optical data data also to remotely-sensed, biogeochemical or hydrographic data sets.
Postprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.