Montado is an agro-forestry system occupying a large surface in countries of the Mediterranean region. In this system, the natural dryland pasture is the principal source for animal feed in extensive grazing. The climatic seasonality associated with the inter-annual irregularity of precipitation greatly influences the development of pasture and its vegetative cycle. The end of spring is a critical period in terms of animal feed due to the notable reduction in the nutritive value of the plants. The objective of this work was to evaluate, through the correlation between pasture quality indexes (Pasture Quality Degradation Index, PQDI and Normalized Difference Vegetation Index, NDVI), two technological approaches for monitoring the evolution of the quality of a biodiverse pasture in the period of greatest vegetative development (between February and June). The technological approaches consisted of (i) proximal sensing (PS), with the use of an active optical sensor; and (ii) remote sensing (RS), using images captured by a Sentinel-2 satellite. The results of this study show strong and significant correlations between PQDI and NDVI (obtained by PS or RS). These two techniques (PS or RS) can, therefore, be used in a complementary way to identify and anticipate the food supplementation needs for animals and support farmers in decision making.