By using the high spectral resolution, hyperspectral images (HSIs) provide significant information for target detection, which is of great interest in HSI processing. However, most classical target detection methods may only perform well based on certain assumptions. Simultaneously, using limited numbers of target samples and preserving the discriminative information is also a challenging problem in hyperspectral target detection. To overcome these shortcomings, this paper proposes a novel adaptive information-theoretic metric learning with local constraints (ITML-ALC) for hyperspectral target detection. The proposed method firstly uses the information-theoretic metric learning (ITML) method as the objective function for learning a Mahalanobis distance to separate similar and dissimilar point-pairs without certain assumptions, needing fewer adjusted parameters. Then, adaptively local constraints are applied to shrink the distances between samples of similar pairs and expand the distances between samples of dissimilar pairs. Finally, target detection decision can be made by considering both the threshold and the changes between the distances before and after metric learning. Experimental results demonstrate that the proposed method can obviously separate target samples from background ones and outperform both the state-of-the-art target detection algorithms and the other classical metric learning methods.