Summary
Integration of solar concentrators with photovoltaic (PV) systems reduces the required number of PV panels, which often account for the major costs of PV systems. The linear Fresnel reflector mirror is considered more effective because of its simplicity and effortless fabrication. An experimental test rig of a concentrated PV/thermal system that employs a linear configuration and horizontal absorber was built for evaluating its electrical and thermal performances. The considered concentrator consists of various widths of flat glass mirrors, which positioned with different angles, and with sun light focusing on the PV cells that fixed over an active cooling system. The experimental investigation of the proposed concentrated PV/thermal system shows that higher electrical and thermal efficiencies can be achieved at comparatively high temperature levels than that typically utilized in a nonconcentrated PV/thermal system. The characteristics of PV cells also indicate that the electrical efficiency values in case of no concentration and with concentration ratio of 6.0 are 9.6%, and 11%, respectively. The measured values for the inlet and outlet cooling water temperatures of the receiver showed that the maximum outlet temperature reached was 75°C with a flow rate of 0.025 L/min, and the product thermal efficiency was 62.3%. These obtained results illustrate an adequate and good thermal and electrical performance under the meteorological weather conditions of the province of Al‐Karak in Jordan.