2021
DOI: 10.4153/s0008439521000023
|View full text |Cite
|
Sign up to set email alerts
|

Spectrality of Moran Sierpinski-type measures on

Min-Min Zhang

Abstract: Let $M=$ diag $(\rho _1,\rho _2)\in M_{2}({\mathbb R})$ be an expanding matrix and Let $\{D_n\}_{n=1}^{\infty }$ be a sequence of digit sets with $D_n=\left \{(0, 0)^T,\,\,\,(a_n, 0 )^T, \,\,\, (0, b_n )^T \right \}$ , where $a_n, b_n\in \{-1,1\}$ . The associated Borel probability measure $$ \begin{align*} \mu_{M,\{D_n\}}:=\delta_{M^{-1}D_1}\ast \delta_{M^{-2}… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 31 publications
0
0
0
Order By: Relevance