A new architecture for increasing the number of simultaneous users in a hybrid system and providing a solution for the channel bottleneck problem has been designed and simulated. The 10G-TDM-OCDMA-PON system combines optical code division multiple access (OCDMA) and time-division multiplexed passive optical network (TDM-PON) techniques. The high bit rate TDM-PON system is based on a bit interleaving that uses noncontiguous order for data arranging manner, this system used to obtain ultra-high-speed data rate of 40 Gbps based on four TDM channels of 10 Gbps. The OCDMA system is based on two-dimensional single weight zero cross-correlation (2D-SWZCC) employing polarization and wavelength scheme with two orthogonal polarization angles (vertical and horizontal states). The proposed hybrid system increases the scalability by multiplexing M OCDMA codes in the same time slot of the TDM system that has N time slots. The results show that the proposed system with 2D-SWZCC has better performance with a high number of users and higher scalability than the system with 1D-SWZCC.