dAnaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts.T icks are ectoparasites of animals and humans and are considered to be the most important arthropod vector of pathogens in some regions (1). Ixodes scapularis Say (Acari: Ixodidae) is an important vector of pathogens that infect and cause disease in humans and domestic animals in the United States. Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), the focus of this study, is the causative agent of human, canine, and equine granulocytic anaplasmosis and tick-borne fever of ruminants (2, 3).A. phagocytophilum is an intracellular bacterium that infects vertebrate host neutrophils, where it multiplies within a parasitophorous vacuole, thus evading host defenses while inhibiting apoptosis and promoting cytoskeleton rearrangement for infection and multiplication (4-8). Tick-A. phagocytophilum interactions are not as well characterized as those between pathogen and vertebrate hosts (4). While A. phagocytophilum has been shown to infect I. scapularis gut cells (9) and salivary glands (10), the developmental cycle of this pathogen has not been described in ticks. Tick proteins such as Salp16, subolesin, antifreeze glycoprotein IAFGP, and alpha1-3-fucosyltransferease were differentially regulated and required for A. phagocytophilum infection of I. scapularis (10-20). Activation of heat shock proteins and other stress response proteins in ticks and cultured tick cells in response to A. phagocytophilum infection was also characterized by proteomics and transcriptomics analyses (21).The overall goal of our research is to characterize molecular interactions at the vector-pathogen interface and develop vaccines for the control of tick infestations and pathogen infection/transmission. Our hypothesis is that tick genes differentially expressed in response to pathogen infection would include those involved in pathogen infection, multiplication, and transmission, as well as in the tick protective response to infection. In this researc...