Ascorbic acid is a vital nutrient and antioxidant that is commonly used as an additive in commercial products. Quantitation of ascorbic acid is highly desired in the medical, food, and cosmetic industries. A spectrofluorometric assay for sensitive determination of ascorbic acid was developed using L-tyrosine as a fluorescent probe. The native fluorescence intensity of tyrosine was quenched using ascorbic acid. The linear range was 0.03-30.00 μM, and the limit of detection was 0.01 μM. The method exhibited excellent precision, accuracy, specificity, and robustness. Components of pharmaceutical preparations that are commonly found with ascorbic acid did not interfere with detection. The procedure was successfully employed for determination of ascorbic acid content in pharmaceutical tablets, injections, and nutrient supplements with satisfactory results. A Stern-Volmer plot and fluorescence lifetime revealed that quenching was attributed to the inner filter effect and static quenching. Isothermal titration calorimetry confirmed the formation of a complex between tyrosine and ascorbic acid, with a binding constant of 1.68 × 10 3 M −1 and reaction stoichiometry of 0.94. Thermodynamic parameters suggested spontaneous complexation via hydrophobic interactions as the dominant binding force. This method is promising for the simple and rapid determination of ascorbic in the pharmaceutical industry.