The light fastness of a number of azo dyes has been investigated using all-valence molecular orbital methods, AM1 and PM3. The results of molecular orbital calculations are used to obtain both highest occupied molecular orbital and lowest unoccupied molecular orbital frontier electron density, which, respectively, can account for the propensity of the electrophilic and nucleophilic attack at a particular atom in a molecule. The highest occupied molecular orbital and lowest unoccupied molecular orbital superdelocalisability have also been obtained to explain the order of light fastness values in different dyes of a particular series. In addition, attempts have been made to correlate the light fastness values with the difference in energy of the highest occupied molecular orbital of the dye and the lowest unoccupied molecular orbital of the singlet oxygen.