The growing concerns regarding fuel consumption within the aerospace and transportation industries make the development of fuel-efficient systems a significant engineering challenge. Currently, materials are selected because of their abilities to satisfy engineering demands for good thermal conductivity, strength-toweight ratio, and tensile strength. These properties make magnesium an excellent option for various industrial or biomedical applications, given that is the lightest structural metal available. The utilization of magnesium alloys, however, requires suitable welding and joining processes that minimizes microstructural changes while maintaining good joint/bond strength. Currently, magnesium are joined using; mechanical fastening, adhesive bonding, brazing, fusion welding processes or diffusion bonding process. Fusion welding is the conventional process used for joining similar metals. However, the application of any welding technique to join dissimilar metals presents additional difficulties, the principal one being; the reaction of the two metals at the joint interface can create intermetallic com pounds that may have unfavorable properties and metallurgical disruptions which deteriorates the joint performance. This chapter investigates the welding and joining technologies that are currently used to join magnesium alloys with emphasis on the development of multi-material structures for applications in the biomedi cal industries. Multi-material structures often provide the most efficient design solution to engineering challenges.