Thin film properties such as homogeneity (radial profiles), optical constants, carbon density in the film, and the surface structures are strongly dependent on deposition conditions. We have investigated a-C:H/a-C:H(N) thin film deposition by expanding Ar-CH 4 and Ar/N 2 -CH 4 surface wave sustained plasmas at a frequency of 2.45 GHz. The influence of the plasma parameters such as pressure, input power, gas mixture rate, and an external bias voltage on the change of the film properties is systematically studied. An external bias applied to the substrate leads to more dense and harder a-C:H films, i.e. change from soft polymer-like to hard diamond-like. Rutherford backscattering and atomic force microscope surface topology confirm the densification of the films.