ABSTRACT:The modified waterborne polyurethane (WPU) with enhanced mechanical properties has been prepared after introducing lignosulfonate calcium (LS). Meanwhile, the LS was associated with WPU component by chemical grafting and/or physical attraction and hence produced a star-like network with LS and its supramolecular complexes as center. Especially, when the LS content was 1.5 wt %, the strength and elongation of WPU/LS blends (WLS) simultaneously increased. At this time, the center of network was dominated by the single molecules of spherical LS. Thereafter, with the increase of LS content, the strength of WLS blends increased unceasingly up to 6.0-7.5 wt % of LS loading while the elongation gradually decreased. Because the LS tend to aggregate as supramolecular complexes spontaneously, the center of network was gradually replaced by the LS supramolecular complexes. The structural changes of WLS blends were characterized by FTIR, DSC, and DMA. The results suggested that the LS component was mostly fused with hard-segments of WPU component and hence induced the formation of physical interaction, importantly for hydrogen bonding, depending on the compulsive association of chemical grafting and the impulse of similar hydrophilicity between the hard-segment and LS.