Objective: The collimators in which the various geometrical configurations have been suggested to optimize the sensitivity and resolution have a key role in acquiring the qualified images in nuclear medicine towards a better recognition of some diseases. Methods: In this study, a new configuration as a geometrical combination of the conical, cylindrical and spherical (CCS) volumes for parallel hole collimators which is assessed by using the volumetric-parametric method has been introduced to improve point spread function (PSF) being the collimators response on the radioactive point source. It has been simulated by the MCNPX code at the various energies values of the point source along with the traditional collimator in which included the cylindrical volume only. Results: The PSF will transmogrify from a delta function to a distribution which can correlate with a Gaussian distribution, while the scattered gamma rays were increased. The simulation results have indicated that the PSF in the CCS configuration is narrower than that of the cylindrical one at all the energies, leading the improvement of the resolution. Also, the theoretical results are agreement with the simulated ones. The more the energy value of the source, the more broaden the PSF will be due the more penetration strength. The narrower the PSF, the better the qualified image will be. Conclusion: This method may be employed to determine the accurate attenuation coefficient of absorbers as well.