A surprisingly simple electrostatic model explains bent vs. linear structures in M+-RG2 species (M = group 1 metal, Li-Fr; RG = rare gas, HeRn). Journal of Physical Chemistry A, 119 (44
A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. J. Phys. Chem. A, 2013, 117, 13578]. In the present work, the geometries for M = K-Fr are found to be bent. A simple electrostatic model explains these conclusions and is able to account almost quantitatively for the binding energy of the second RG atom, as well as the form of the angular potential, for all thirty six titular species. Additionally, results of population analyses are presented together with orbital contour plots; combined with the success of the electrostatic model, the expectation that these complexes are all physically bound is confirmed.4