The Williams-Beuren syndrome (WBS) locus on human chromosome 7q11.23 is flanked by complex chromosome-specific low-copy repeats that mediate recurrent genomic rearrangements of the region. Common genomic rearrangements arise through unequal meiotic recombination and result in complex but distinct behavioural and cognitive phenotypes. Deletion of 7q11.23 results in WBS, which is characterised by mild to moderate intellectual disability or learning difficulties, with relative cognitive strengths in verbal short-term memory and in language and extreme weakness in visuospatial construction, as well as anxiety, attention-deficit hyperactivity disorder and overfriendliness. By contrast, duplication results in severely delayed speech and expressive language, with relative strength in visuospatial construction. Although deletion and duplication of the WBS region have very different effects, both cause forms of language impairment and suggest that dosage-sensitive genes within the region are important for the proper development of human speech and language. The spectrum and frequency of genomic rearrangements at 7q11.23 presents an exceptional opportunity to identify gene(s) directly involved in human speech and language development.Although childhood disorders of cognition, language and behaviour are extremely common (WHO: http://www.who.int/en/), causative genes have remained particularly refractory to traditional genetic approaches since the disorders themselves are often sporadic in nature and their causes complex and both genetically and environmentally heterogeneous. Genomic disorders, caused by the gain, loss or inversion of specific chromosome regions, are often characterised by neurodevelopmental phenotypes and present a unique opportunity to identify genes and pathways that are necessary for proper brain development and function (Ref. 1).One such region that is prone to genomic rearrangement is the Williams-Beuren syndrome (WBS) locus at chromosome 7q11.23. This 1.5 million base pair region has been shown to commonly undergo deletion, duplication or inversion through unequal meiotic recombination between highly similar flanking segments of DNA (Refs 2,3,4
CIHR Author Manuscript
CIHR Author Manuscript CIHR Author Manuscriptthe region is not associated with any clinical features, but can predispose the chromosome to subsequent unequal recombination during the next round of meiosis. The inversion is estimated to be present at a frequency of 1 in 20, but there is a fivefold increase in carrier frequency in the parents of children with the WBS deletion (Refs 3,5). Deletion and duplication of 7q11.23 result in distinct patterns of cognitive impairment, both of which impact on language and speech abilities, albeit in very different ways (Refs 4, 6, 7). The WBS deletion has an estimated frequency of between 1 in 7500 and 1 in 20 000 (Refs 8, 9). As a result of the mechanism of genomic rearrangement, duplication should occur at a similar frequency; however, owing to its very recent discovery, the population fre...