Ucapan suara memiliki informasi penting yang dapat diterima oleh otak melalui gelombang suara. Otak menerima gelombang suara melalui alat pendengaran dan menghasilkan suatu informasi berupa pesan, bahasa, dan emosi. Pengenalan emosi wicara merupakan teknologi yang dirancang untuk mengidentifikasi keadaan emosi seseorang dari sinyal ucapannya. Hal tersebut menarik untuk diteliti, karena berkaitan dengan teknologi zaman sekarang yaitu pada penggunaan smartphone di berbagai macam aktivitas sehari-hari. Penelitian ini membandingkan ekstraksi fitur Metode LPC dan Metode MFCC. Kedua metode ekstraksi tersebut diklasifikasi menggunakan Metode Jaringan Syaraf Tiruan (MLP) untuk pengenalan emosi. Masing-masing metode menggunakan data emosi marah, bosan, bahagia, netral, dan sedih. Data dibagi menjadi dua, yaitu data testing dan data data training dengan perbandingan 80:20. Arsitektur jaringan yang digunakan adalah tiga lapisan yaitu lapisan input, lapisan tersembunyi, dan lapisan output. Parameter MLP yang digunakan learning rate = 0.0001, epsilon = 1e-08, epoch = 500, dan Cross Validation = 5. Hasil akurasi pengenalan emosi dengan ekstraksi fitur LPC sebesar adalah 28%. Sedangkan hasil akurasi dengan ekstraksi fitur MFCC sebesar 61,33%. Hasil akurasi ini bisa ditingkatkan dengan menambahkan data yang lebih banyak lagi, terutama untuk data testing. Perlunya pengujian pada nilai parameter jaringan MLP, yaitu dengan mengubah nilai-nilai parameter, karena dapat mempengaruhi tingkat akurasi pengenalan. Selain itu penentuan ekstraksi fitur dan klasifikasi metode yang lain juga dapat digunakan untuk mencari nilai akurasi pengenalan emosi yang lebih baik lagi.