Aiming at the problems of the radial basis network model, this paper proposes a multimedia vocal singing automation evaluation network model, combined with the characteristics of multimedia modeling innovation design, and proposes a two-level comprehensive model. First of all, the theory and algorithm of analytic hierarchy process and radial basis function network are researched and analyzed, and the RBF is predicted for the mature area of multimedia development based on the three indicators of the total amount of classified vocals. The prediction scheme evaluation system is then used to fit the prediction data and influencing factors using the RBF network, and then the classified vocals are adjusted and synthesized hierarchically, and a multimedia vocal classification prediction model is established. Finally, this paper uses an example to verify the feasibility performance and prediction accuracy. Based on the above theory, the experiment uses VC++ 6.0 and Matlab 6.5 combined with database technology to initially realize the evaluation system and achieves a good evaluation effect. The simulation results show that three different algorithms are used to establish RBFO content prediction models. The correlation coefficient limit, root mean square error prediction, and relative analysis error (RED) reached 0.9937, 15.5095, and 8.216, respectively. At the same time, the evaluation results have high accuracy and credibility, which not only provide designers with ideas and improvement basis for innovative designs but also ensure design quality, improve design efficiency, and show that RBF networks have good generalization capabilities.