2023
DOI: 10.3390/s23084025
|View full text |Cite
|
Sign up to set email alerts
|

Speech Recognition of Accented Mandarin Based on Improved Conformer

Abstract: The convolution module in Conformer is capable of providing translationally invariant convolution in time and space. This is often used in Mandarin recognition tasks to address the diversity of speech signals by treating the time-frequency maps of speech signals as images. However, convolutional networks are more effective in local feature modeling, while dialect recognition tasks require the extraction of a long sequence of contextual information features; therefore, the SE-Conformer-TCN is proposed in this p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?