Controlling an uncertain mechatronic system is challenging and crucial for its automation. In this regard, several control-strategies are developed to handle such systems. However, these control-strategies are complex to design, and require in-depth knowledge of the system and its dynamics. In this study, we are testing the performance of a rather simple control-strategy (Adaptive Neuro- Fuzzy Inference System) using an uncertain Ball and Beam System. The custom- designed apparatus utilizes image processing technique to acquire the position of the ball on the beam. Then, desired position is achieved by controlling the beam angle using Adaptive Neuro-Fuzzy and PID control. We are showing that adaptive neuro-fuzzy control can effectively handle the system uncertainties, which traditional controllers (i.e., PID) cannot handle.