For the Permanent Magnet Synchronous Motor (PMSM) control system of the Mine Traction Electric Locomotive (MTEL), the fluctuation of the load will lead to the resonance of the velocity of the MTEL. In addition, the speed sensor is easy to be damaged due to the moisture, dust, and vibration. To solve the above problems, a disturbance observer-based (DOB) backstepping control of PMSM for the MTEL is proposed in this paper. First, a full-dimensional Luenberger observer for PMSM is designed and the asymptotically stability of the observer is proved. Next, through the designing of the virtual control input that includes the reconstruction disturbances and using backstepping control strategy, the DOB controller is proposed. The obtained controller can achieve high precision speed tracking and disturbance rejection. Finally, the effectiveness and feasibility of the designed system are verified by Matlab simulation and experiment results.