We study a scheduling model with speed scaling for machines and the immediate start requirement for jobs. Speed scaling improves the system performance, but incurs the energy cost. The immediate start condition implies that each job should be started exactly at its release time. Such a condition is typical for modern Cloud computing systems with abundant resources. We consider two cost functions, one that represents the quality of service and the other that corresponds to the cost of running. We demonstrate that the basic scheduling model to minimize the aggregated cost function with n jobs is solvable in O(n log n) time in the singlemachine case and in O(n 2 m) time in the case of m parallel machines. We also address additional features, e.g., the cost of job rejection or the cost of initiating a machine. In the case of a single machine, we present algorithms for minimizing one of the cost functions subject to an upper bound on the value of the other, as well as for finding a Pareto-optimal solution.