Based on the inconsistent literature published thus far involving infertile patients, whether intracytoplasmic sperm injection (ICSI) allows overcoming total fertilization failure due to sperm DNA fragmentation is still unclear. Related to this, female factors, which may have a significant impact on assisted reproduction outcomes, can mask male infertility. In this scenario, evaluating ICSI outcomes following cycles using healthy donor gametes could shed light on this realm, as it would avoid the influence of (un)known confounding factors present in infertile individuals. The present work, therefore, aimed to address whether single- and double-stranded sperm DNA fragmentation leads to impaired ICSI outcomes in double gamete donation cycles. The study also compared these double-gamete donation cycles to cycles in which only sperm were donated and oocytes were obtained from infertile patients. Two cohorts were included: (a) the Donor-Donor (DD) cohort, which included 27 semen donor samples used in 49 ICSI cycles with young healthy oocyte donors; and (b) the Donor-Infertile (DI) cohort, which involved 34 semen donor samples used in 57 ICSI cycles with oocytes from patients. Single- and double-stranded sperm DNA breaks were determined with alkaline and neutral Comet assays, respectively; ICSI was conducted following standard protocols and embryos were monitored through time-lapse microscopy. In the DD cohort, the percentage of sperm with high overall DNA damage correlated with fertilization rates (Rs = − 0.666; P < 0.001) and with the percentage of blastocysts per injected oocyte (Rs = − 0.414; P = 0.040). In addition, sperm DNA damage delayed the first embryo division (Rs = 0.421; P = 0.036), and development from the 8-cell to the morula stage (Rs = 0.424; P = 0.034). In contrast, double-stranded DNA breaks had no effect in this cohort. As far as the DI cohort is concerned, while overall sperm DNA damage was not found to be correlated to fertilization or blastocyst rates, pronuclei formation following ICSI was delayed when the incidence of double-stranded DNA breaks was high (Rs = 0.485; P = 0.005). In conclusion, this study, which is the first involving double donation cycles (i.e., a donor-donor cohort), supports that sperm DNA damage has a detrimental impact on fertilization rates after ICSI, and delays embryo development. Moreover, the use of oocytes from infertile individuals is suggested to hide the male-factor effect.