In this contribution, the detector-characterization results and some of the on-ground calibration plans are presented for an adjusted and improved SPEXone satellite instrument. SPEXone is a highly compact multi-angle space spectro-polarimeter developed by a Dutch consortium for the NASA PACE observatory scheduled for launch early 2024. This instrument will enable detailed characterization of the microphysical properties of fine particulate matter or aerosols in the atmosphere from low Earth orbit, which is essential for climate, ecosystem, and human-health science. A successor to the SPEXone instrument is currently being developed, with a wider swath as the main change (250 km instead of 100 km), and with several design improvements to reduce straylight. The detector firmware was adjusted to enable the required higher frame rate, and to make the readout more robust. The detector was characterized in a similar way as for PACE, though even more extensively based on lessons learned. In particular, full illumination measurements were complemented with partial illumination measurements, where parts of the detector are covered using dedicated detector masks, to investigate peculiar signal-induced offset effects that were observed only late for PACE. Additionally, direct memory measurements were performed using time-dependent illumination generated using a fast electronic shutter. Following the detector characterization, instrument-calibration preparations have started. The instrument will be fully calibrated in ambient, complemented with a highly selective set of measurements in vacuum. The approach followed will be similar to PACE, but modifications will be made to deal with the increased swath. Important improvements will be implemented to improve the data quality, such as increased number of wavelengths for straylight measurements.