2018
DOI: 10.1007/s10711-018-0327-4
|View full text |Cite
|
Sign up to set email alerts
|

Spherical geometry and the least symmetric triangle

Abstract: We study the problem of determining the least symmetric triangle, which arises both from pure geometry and from the study of molecular chirality in chemistry. Using the correspondence between planar n-gons and points in the Grassmannian of 2-planes in real n-space introduced by Hausmann and Knutson, this corresponds to finding the point in the fundamental domain of the hyperoctahedral group action on the Grassmannian which is furthest from the boundary, which we compute exactly. We also determine the least sym… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?