2020
DOI: 10.3846/gac.2020.11316
|View full text |Cite
|
Sign up to set email alerts
|

Spheroidal Spline Interpolation and Its Application in Geodesy

Abstract: The aim of this paper is to study the spline interpolation problem in spheroidal geometry. We follow the minimization of the norm of the iterated Beltrami-Laplace and consecutive iterated Helmholtz operators for all functions belonging to an appropriate Hilbert space defined on the spheroid. By exploiting surface Green’s functions, reproducing kernels for discrete Dirichlet and Neumann conditions are constructed in the spheroidal geometry. According to a complete system of surface spheroidal harmonics… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 17 publications
0
0
0
Order By: Relevance