The review is devoted to field reversed configurations and to the related field reversed mirrors; both are compact toroids with little or no toroidal magnetic field. Experimental and theoretical results on the formation, equilibrium, stability and confinement properties of these plasmas are presented. Although they have been known for about three decades, field reversed configurations have been studied intensively only in recent years. This renewed interest is due to the unusual fusion reactor potential of these high beta plasmas and also to their surprising macroscopic stability. At the present time, field reversed configurations appear to be completely free of gross instabilities and show relatively good confinement. The primary research goal for the near future is to retain these favourable properties in a less kinetic regime. Other important issues include the development of techniques for slow formation and stability, and a clearer assessment of the confinement scaling laws.