ABSTRACTSphingolipids (SL) are ubiquitous in mammalian cell membranes, yet there is little data on the behavior of cells under SL-restriction conditions. LY-B cells derive from a CHO line in which serine palmitoyl transferase (SPT), thus de novo SL synthesis, is suppressed, while maintaining the capacity of taking up and metabolizing exogenous sphingoid bases from the culture medium. In the present study LY-B cells were adapted to grow in a fetal bovine serum (FBS)-deficient medium to avoid external uptake of lipids. The lowest FBS concentration that allowed LY-B cell growth, though at a slow rate, under our conditions was 0.04%, i.e. 250-fold less than the standard (10%) concentration. Cells grown under limiting SL concentrations remained viable for at least 72 h. Enriching with sphingomyelin the SL-deficient medium allowed the recovery of control LY-B cell growth rates. Studies including whole cells, plasma membrane preparations, and derived lipid vesicles were carried out. Laurdan fluorescence was recorded to measure membrane molecular order, showing a significant decrease in the rigidity of LY-B cells, not only in plasma membrane but also in whole cell lipid extract, as a result of SL limitation in the growth medium. Plasma membrane preparations and whole cell lipid extracts were also studied using atomic force microscopy in the force spectroscopy mode. Force measurements demonstrated that lower breakthrough forces were required to penetrate samples obtained from SL-poor LY-B cells than those obtained from control cells. Mass-spectroscopic analysis was also a helpful tool to understand the rearrangement undergone by the LY-B cell lipid metabolism. The most abundant SL in LY-B cells, sphingomyelin, decreased by about 85% as a result of SL limitation in the medium, the bioactive lipid ceramide and the ganglioside precursor hexosylceramide decreased similarly, together with cholesterol. Quantitative SL analysis showed that a 250-fold reduction in sphingolipid supply to LY-B cells led to a 6-fold decrease in membrane sphingolipids, underlining the resistance to changes in composition of these cells. Plasma membrane compositions exhibited similar changes, at least qualitatively, as the whole cells with SL restriction. A linear correlation was observed between the sphingomyelin concentration in the membranes, the degree of lipid order as measured by laurdan fluorescence, and membrane breakthrough forces assessed by atomic force microscopy. Concomitant changes were detected in glycerophospholipids under SL-restriction conditions.