“…This approach was applied for several cases, including a reactive distillation process to produce ethylene glycol from ethylene oxide and water [49]. Recent works include the synthesis and intensification for the separation of a ternary mixture consisting of benzene, toluene, and o-xylene [50], the generation of various flowsheets from the block superstructure including the hydrodealkylation of toluene to produce benzene, the generation of products C and D from reactants A and B, and the methanol production from biogas [51], the synthesis of water integration, a heat exchanger network, and simultaneous water and heat integration [52], the integration and intensification for the production of ethylene glycol where heat integration outperforms reactive distillation-based processes [13], the synthesis of separation/reaction distillation intensified processes for the production of ethylene glycol [27], the synthesis of membrane reactors for the production of methanol from syngas and the partial oxidation of methane to generate syngas [53], and the synthesis and intensification of membrane-based processes for the separation of methane from nitrogen, vapor permeation for the separation of methanol/water, and gas permeation for the separation of syngas [54].…”