2022
DOI: 10.3389/fcogn.2022.1026819
|View full text |Cite
|
Sign up to set email alerts
|

Spike-based statistical learning explains human performance in non-adjacent dependency learning tasks

Abstract: Grammar acquisition is of significant importance for mastering human language. As the language signal is sequential in its nature, it poses the challenging task to extract its structure during online processing. This modeling study shows how spike-timing dependent plasticity (STDP) successfully enables sequence learning of artificial grammars that include non-adjacent dependencies (NADs) and nested NADs. Spike-based statistical learning leads to synaptic representations that comply with human acquisition perfo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 61 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?