The study of pattern emergence together with exploration of the exemplar Turing model is enjoying a renaissance both from theoretical and experimental perspective. Here, we implement a stability analysis of spatially dependent reaction kinetics by exploring the effect of a jump discontinuity within piece-wise constant kinetic parameters, using various methods to identify and confirm the diffusiondriven instability conditions. Essentially, the presence of stability or instability in Turing models is a local property for piece-wise constant kinetic parameters and, as such, may be analysed locally. In particular, a local assessment of whether parameters are within the Turing space provides a strong indication that for a large enough region with these parameters, an instability can be excited.