Quantum dynamical systems are capable of powerful computation but are hard to emulate on digital computers. We show that four novel analog circuit parts can emulate the phase-coherent unitary dynamics of such systems. These four parts are: a Planck capacitance analogous to a neuronal membrane capacitance; a quantum admittance element, together with the Planck capacitance, analogous to a neuronal quadrature oscillator; a quantum transadmittance element analogous to a complex neuronal synapse; and a quantum transadmittance mixer element analogous to a complex neuronal synapse with resonant modulation. These parts may be emulated classically, with paired real-value voltages on paired Planck capacitances corresponding to the real and imaginary portions of a probability amplitude; and appropriate paired real-value currents onto these Planck capacitances corresponding to diagonal (admittance), off-diagonal (transadmittance), or controlled off-diagonal (transadmittance mixer) Hamiltonian energy terms. The superposition of 2n simultaneously phase-coherent and symmetric probability-voltage amplitudes with O(n) of these parts, in a tensor-product architecture enables analog emulation of the quantum Fourier transform (QFT). Implementation of our circuits on an analog integrated circuit in a 0.18 μm process yield experimental results consistent with mathematical theory and computer simulations for emulations of NMR, Josephson-Junction, and QFT dynamics. Our results suggest that linear oscillatory neuronal networks with pairs of complex subthreshold/nonspiking sine and cosine neurons that are coupled together via complex synapses to other such complex neurons can architect quantum-inspired computation with classical analog circuits. Thus, an analog-circuit mapping between quantum and neural computation, both of which exploit analog computation for powerful operation, can enable future synergies between these fields.