The periodic flashing potential has proven to be a powerful tool for investigating directed atomic currents. By applying the flashing ring-shaped potential to spin-orbit (SO) coupled, noninteracting Bose-Einstein condensate (BEC) systems, through photon-assisted tunneling (resonance) techniques, we demonstrate the generation of tunable alternating (AC) spin and atomic mass currents that can be precisely controlled in terms of direction and strength. The underlying mechanism behind this phenomenon is that the flashing potential supplies enough photons to induce Rabi oscillations and provides momentum transfer for spin and atomic transport. In particular, we realize and explain the mechanism of generating a net AC spin current without mass current through single-photon resonance processes. It is shown that these interesting resonance phenomena can be analytically described only by the simple three-level model, which creates the possibility of transparent controls of spin dynamics.