This work develops a new generalized technique for determining the static and dynamic properties of any non-collinear magnetic system. By rotating the spin operators into the local spin reference frame, we evaluate the zeroth, first, and second order terms in a Holstein-Primakoff expansion, and through a Green's functions approach, we determine the structure factor intensities for the spin-wave frequencies. To demonstrate this technique, we examine the spin-wave dynamics of the generalized Villain model with a varying interchain interaction. The new interchain coupling expands the overall phase diagram with the realization of two non-equivalent canted spin configurations. The rotational Holstein-Primakoff expansion provides both analytical and numerical results for the spin dynamics and intensities of these phases.