Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Der Entwurf neuartiger magnetischer Materialien auf molekularer Basis, die für eine Vielzahl von Anwendungen von Interesse sind, ist immer noch eine Kunst. Um ein makroskopisches ferro‐oder ferrimagnetisches Verhalten zu erzielen, ist es erforderlich‐unter Zugrundelegung von Modellen zur Spin‐Spin‐Kopplung‐, Materialien mit ganz bestimmten Primär‐, Sekundär‐und Tertiärstrukturen aufzubauen. Kooperative Phänomene zeigen beispielsweise einige metallorganische Festkörper, die aus linearen Ketten aus Metallocen‐Donoren D und Cyankohlenwasserstoff‐Acceptoren A nach…︁D.+A.+D.+A.+…︁ aufgebaut sind.
Der Entwurf neuartiger magnetischer Materialien auf molekularer Basis, die für eine Vielzahl von Anwendungen von Interesse sind, ist immer noch eine Kunst. Um ein makroskopisches ferro‐oder ferrimagnetisches Verhalten zu erzielen, ist es erforderlich‐unter Zugrundelegung von Modellen zur Spin‐Spin‐Kopplung‐, Materialien mit ganz bestimmten Primär‐, Sekundär‐und Tertiärstrukturen aufzubauen. Kooperative Phänomene zeigen beispielsweise einige metallorganische Festkörper, die aus linearen Ketten aus Metallocen‐Donoren D und Cyankohlenwasserstoff‐Acceptoren A nach…︁D.+A.+D.+A.+…︁ aufgebaut sind.
Magnets composed of molecular species or polymers and prepared by relatively low‐temperature organic synthetic methodologies are a focus of contemporary materials science research. The anticipated properties of such molecular‐species‐based magnetic materials, particularly in combination with other properties associated with molecules and polymers, may enable their use in future generations of electronic, magnetic, and/or photonic/photronic devices ranging from information storage and magnetic imaging to static and low‐frequency magnetic shielding. A tutorial of typical magnetic behavior of molecular materials is presented. The three distinct models (intramolecular spin coupling through orthogonal orbitals in the same spatial region within a molecule/ion, intermolecular spin coupling through pairwise “configuration interaction” between spin‐containing moieties, and dipole—dipole, through‐space interactions) which enable the design of new molecular‐based magnetic materials are discussed. To achieve the required spin couplings for bulk ferro‐ or ferrimagnetic behavior it is crucial to prepare materials with the necessary primary, secondary, and tertiary structures akin to proteins. Selected results from the worldwide effort aimed at preparing molecular‐based magnetic materials by these mechanisms are described. Some organometallic solids comprised of linear chains of alternating metallocenium donors (D) and cyanocarbon acceptors (A) that is, …︁D•+ A•− D•+ A•−…︁, exhibit cooperative magnetic phenomena. Bulk ferromagnetic behavior was first observed below the critical (Curie) temperature Tc of 4.8 K for [FeIII(C5Me5)2]•+ [TCNE]•− (Me = methyl; TCNE = tetracyanoethylene). Replacement of FeIII with MnIII leads to a ferromagnet with a Tc of 8.8 K in agreement with mean‐field models developed for this class of materials. Replacement with CrIII, however, leads to a ferromagnet with a Tc lowered to 3.65 K which is at variance with this model. Extension to the reaction of a vanadium(o) complex with TCNE leads to the isolation of a magnet with a Tc ≈ 400 K, which exceeds the thermal decomposition temperature of the material. This demonstrates that a magnetic material with a Tc substantially above room temperature is achievable in a molecule/organic/polymeric material. Finally, a new class of one‐dimensional ferrimagnetic materials based on metalloporphins is discussed.
Valence bond (VB) diagrams form a complete basis for model Hamiltonians that conserve total spin, S, and have one valence state, +p, per site. Hubbard and Pariser-Parr-Pople (PPP) models illustrate ionic problems, with zero, one, or two electrons in each 4 , while isotropic Heisenberg models illustrate spin problems, with only purely covalent V B diagrams. The difficulty of nonorthogonal V B diagrams is by-passed by exploiting the finite dimensionality of the complete basis and working with unsymmetric sparse matrices. We introduce efficient bit manipulations for generating, storing, and handling V B diagrams as integers and describe a new coordinate relaxation method for the ground and lowest excited states of unsymmetric sparse matrices. Antiferromagnetic spin-; Heisenberg rings and chains of N S 2 0 spins, or 2N spin functions, are solved in C, symmetry as illustrative examples. The lowest S = 1 and 0 excitations are related to domain walls, or spin solitons, and studied for alternations correiponding to polyacetylene. V B diagrams with arbitrary S and nonneighbor interactions are constructed for both spin and ionic problems, thus extending diagrammatic VB theory to other topologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.