We consider an effective two-dimensional Bose-Einstein condensate with some spin-orbit coupling (SOC) and a rotation term in an external harmonic potential. We find the striped state, and analyze the effects of SOC, the external potential, and the rotation frequency/direction on the profile and the stability of the striped state. Without the rotation term, the two spinor components exhibit striped pattern, and the numbers of stripes in the two components are always an odd-even or an even-odd. With the increasing of the SOC strength, the number of stripes in both components increases, while the difference of the striped numbers is always one. After adding the rotation term, the profiles of the spinor components change qualitatively, and the change regulation of the striped numbers differs, while the difference of the striped numbers is still one. In addition, we find that the rotation direction only makes the striped state of the two spinor components exchange each other, though the clockwise and counterclockwise rotation directions are inequivalent with presence of SOC. Such regulation is different from previous study. And the rotation frequency gives rise to the phase transition from the striped state to a mixture of striped state and vortex state. Furthermore, we prove the stability of these states by the evolution and linear stability analysis.