A review is provided here about the thermal effects on optical chirality. To this goal, chiral objects dispersed in an embedding fluid are examined for their magnetoelectric coupling. Thermal effects on several chiral meta-atoms and their ensembles are examined. To this goal, DNA-like helical structures are examined in detail. The mechanical aspect of thermo-elasticity is reviewed along with transverse deformations while drawing analogies from condensed-matter physics. In this respect, the chirality-induced spin selection is reviewed along with the temperature-mediated electron–phonon interactions. A wide range of materials, such as polymers and biological cells, are also examined for temperature effects. A transition temperature delineating a sign flip in the chirality parameter is identified as well. Chirality-associated functionalities such as ratchet motions, switching, and modulations are investigated for their respective thermal effects. Issues of fabricating chiral meta-atoms are also discussed.