Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nuclei around Ne20 exhibit an interplay of different excitations caused by different aspects of nuclear structure, including single-particle and multiparticle configurations and collective rotations. One-nucleon transfer reactions selectively probe single-particle structures in these nuclei. These nuclei are also important to astrophysics, with a number of important reactions proceeding through this mass region. Energy levels approaching the α-particle threshold in Ne21 are of importance to nuclear structure. The Ne20(d,p)Ne21 reaction was measured and the corresponding spectroscopic nuclear information was extracted. States in Ne21 were populated using the Ne20(d,p)Ne21 reaction in forward kinematics. Protons were identified in the Triangle Universities Nuclear Laboratory (TUNL) Enge split-pole spectrograph and angular distributions were extracted. Spin-party assignments were made and neutron partial widths were determined based on distorted-wave Born approximation (DWBA) analysis. Several new energy levels were observed at energies of 7176, 7235, 7250, and 7337 keV, and spin-parities are reported which generally agree with previous results where literature was available. Spin and parity assignments are reported for several energy levels along with estimated neutron widths for those states above the neutron threshold (Sn=6761keV). Results from this study are placed in context with a review of the available literature on all known states in this energy region of Ne21.Published by the American Physical Society2024
Nuclei around Ne20 exhibit an interplay of different excitations caused by different aspects of nuclear structure, including single-particle and multiparticle configurations and collective rotations. One-nucleon transfer reactions selectively probe single-particle structures in these nuclei. These nuclei are also important to astrophysics, with a number of important reactions proceeding through this mass region. Energy levels approaching the α-particle threshold in Ne21 are of importance to nuclear structure. The Ne20(d,p)Ne21 reaction was measured and the corresponding spectroscopic nuclear information was extracted. States in Ne21 were populated using the Ne20(d,p)Ne21 reaction in forward kinematics. Protons were identified in the Triangle Universities Nuclear Laboratory (TUNL) Enge split-pole spectrograph and angular distributions were extracted. Spin-party assignments were made and neutron partial widths were determined based on distorted-wave Born approximation (DWBA) analysis. Several new energy levels were observed at energies of 7176, 7235, 7250, and 7337 keV, and spin-parities are reported which generally agree with previous results where literature was available. Spin and parity assignments are reported for several energy levels along with estimated neutron widths for those states above the neutron threshold (Sn=6761keV). Results from this study are placed in context with a review of the available literature on all known states in this energy region of Ne21.Published by the American Physical Society2024
When we think of clustering in nuclear physics, the astrophysical importance within light nuclei and structural manifestations with classical analogs immediately come to mind. 4He, also known as the alpha particle, is the most abundant nucleus in the Universe, being quite tightly bound for its mass, with a first excited state of over 20 MeV. The nature of the alpha particle places it in a unique position within nuclear astrophysics and structure (including geometry). The plurality of energy release from stellar hydrogen fusion—whether quiescent or explosive—comes from the conversion of hydrogen to helium. Within more complex nuclei, the alpha particles are continuously arranged, leading to fascinating phenomena such as excited rotational bands, Borromean ring ground states, and linear structures. Nuclei with an equal and even number of protons and neutrons are colloquially referred to as “alpha conjugate nuclei,” where such special properties are the most pronounced and easiest to spot. However, when a single nucleon or a pair of nucleons is added to the system, alpha clustering not only remains evident but it may also be enhanced. Excited states with large alpha partial widths are a signature of clustering behavior, and these states can have a profound effect on the reaction rates in astrophysical systems when the excitation energy aligns with the so-called Gamow energy—the preferential thermal energy to statistically overcome the Coulomb barrier. In this article, we will consider in detail the specific ramifications of alpha clustering in selected scenarios for both nuclear astrophysics and topology. In particular, we discussed the astrophysical reactions of 7Li (α, γ), 7Be+α, 11C (α, p), and 30S (α, p), where α-clusters may increase the reaction rates from 10% to an order of magnitude; large α resonances make the astrophysical rate of 18F (p, α) quite uncertain. We also focused on the α rotational bands of both positive and negative parities of 11B and 11C, and finally on the strongest evidence for the linear-chain cluster state observed in 14C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.