Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lead halide perovskites have been explored ardently in the past decade owing to their excellent photophysical properties. High‐temperature cation exchange reactions have been employed to improve the stability and performance in perovskite lattice, but lacks control over size, shape, and stoichiometry. Herein, the solution phase interaction of cesium lead bromide (CsPbBr3) nanocrystals with monovalent and bivalent copper ions, under ambient conditions is systematically investigated. The introduction of Cu1+ explicitly initiates a one‐dimensional growth with a distinct phase transition, that is from cubic to orthorhombic, while Cu2+ induces a partial exchange with Pb2+ with no phase change. DFT calculations suggest that Cu1+ induces structural distortion via Cs1+ substitution, altering the Goldschmidt tolerance factor and perovskite octahedral tilting, leading to the phase transition. Additionally, the oleic acid/amine ligands used to stabilize the nanocrystals, are preferentially etched away to form complexes with Cu1+, initializing an oriented growth of the nanocubes to nanorods. A mechanistic investigation of the evolution of the nanorods gave insights on tuning the tolerance factor via room temperature modifications and cation exchanges in perovskites for anisotropy and morphology tuning. This effortlessly obtained perovskite nanorods with Cu1+ could find effective applications in optoelectronics, and as novel photocatalysts.
Lead halide perovskites have been explored ardently in the past decade owing to their excellent photophysical properties. High‐temperature cation exchange reactions have been employed to improve the stability and performance in perovskite lattice, but lacks control over size, shape, and stoichiometry. Herein, the solution phase interaction of cesium lead bromide (CsPbBr3) nanocrystals with monovalent and bivalent copper ions, under ambient conditions is systematically investigated. The introduction of Cu1+ explicitly initiates a one‐dimensional growth with a distinct phase transition, that is from cubic to orthorhombic, while Cu2+ induces a partial exchange with Pb2+ with no phase change. DFT calculations suggest that Cu1+ induces structural distortion via Cs1+ substitution, altering the Goldschmidt tolerance factor and perovskite octahedral tilting, leading to the phase transition. Additionally, the oleic acid/amine ligands used to stabilize the nanocrystals, are preferentially etched away to form complexes with Cu1+, initializing an oriented growth of the nanocubes to nanorods. A mechanistic investigation of the evolution of the nanorods gave insights on tuning the tolerance factor via room temperature modifications and cation exchanges in perovskites for anisotropy and morphology tuning. This effortlessly obtained perovskite nanorods with Cu1+ could find effective applications in optoelectronics, and as novel photocatalysts.
The photocatalytic reduction of CO2 into valuable chemicals and fuels has become a significant research focus in recent years due to its environmental sustainability and energy efficiency. Metal halide perovskites (MHPs), renowned for their remarkable optoelectronic properties and tunable structures, are regarded as promising photocatalysts. Yet, their practical uses are constrained by inherent instability, severe electron–hole recombination, and a scarcity of active sites, prompting substantial research efforts to optimize MHP‐based photocatalysts. This review summarizes the latest advancements in MHP‐based photocatalysis. First the fundamental principles of photocatalysis are outlined and the structural and optical characteristics of MHPs are evaluated. Then key strategies for enhancing MHP photocatalysts, including morphology and surface modification, encapsulation, metal cation doping, heterojunction engineering, and molecular immobilization are highlighted. Finally, considering recent research progress and the needs for industrial application, challenges and future prospects are explored. This review aims to support researchers in the development of more efficient and stable MHP‐based photocatalysts.
Enhancing the ferroelectric polarization field and tuning the electron spin polarization as novel approaches to improve photocatalytic performance have sparked considerable research interest. Obviously, a straightforward strategy to simultaneously regulate ferroelectric and spin polarization will have a very attractive application prospect. In this study, a series of Bi4NbO8Cl‐Ni photocatalysts are synthesized by doping different concentrations of magnetic element Ni into ferroelectric semiconductor Bi4NbO8Cl. Due to the significant difference in atomic radius, Ni doping induces greater structural distortion and enhances the deviation of positive and negative charge centers in the crystal, thereby resulting in a stronger ferroelectric polarization field. Moreover, spin polarization is induced in the electrons, and photogenerated carriers exhibit higher spatial separation efficiency under magnetic field. Thanks to the synchronous regulation of ferroelectric and spin polarization by Ni doping, the average rates of H2 and O2 production from photocatalytic water splitting over Bi4NbO8Cl‐Ni under visible light are 342.6 and 207.1 µmol g−1 h−1, respectively, which are 10.6 and 2.7 times those of pure Bi4NbO8Cl. Notably, under an applied magnetic field of 300 mT, the average production rates are further promoted up to 616.7 and 331.4 µmol g−1 h−1. This study offers a novel strategy to significantly improve photocatalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.