Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The detection and certification of entanglement and quantum correlations in materials is of fundamental and far‐reaching importance, and has seen significant recent progress. It impacts both the understanding of the basic science of quantum many‐body phenomena as well as the identification of systems suitable for novel technologies. Frameworks suitable to condensed matter that connect measurements to entanglement and coherence have been developed in the context of quantum information theory. These take the form of entanglement witnesses and quantum correlation measures.The underlying theory of these quantities, their relation to condensed matter experimental techniques, and their application to real materials are comprehensively reviewed. In addition, their usage in, e.g., protocols, the relative advantages and disadvantages of witnesses and measures, and future prospects in, e.g., correlated electrons, entanglement dynamics, and entangled spectroscopic probes, are presented. Consideration is given to the interdisciplinary nature of this emerging research and substantial ongoing progress by providing an accessible and practical treatment from fundamentals to application. Particular emphasis is placed on quantities accessible to collective measurements, including by susceptibility and spectroscopic techniques. This includes the magnetic susceptibility witness, one‐tangle, concurrence and two‐tangle, two‐site quantum discord, and quantum coherence measures such as the quantum Fisher information.
The detection and certification of entanglement and quantum correlations in materials is of fundamental and far‐reaching importance, and has seen significant recent progress. It impacts both the understanding of the basic science of quantum many‐body phenomena as well as the identification of systems suitable for novel technologies. Frameworks suitable to condensed matter that connect measurements to entanglement and coherence have been developed in the context of quantum information theory. These take the form of entanglement witnesses and quantum correlation measures.The underlying theory of these quantities, their relation to condensed matter experimental techniques, and their application to real materials are comprehensively reviewed. In addition, their usage in, e.g., protocols, the relative advantages and disadvantages of witnesses and measures, and future prospects in, e.g., correlated electrons, entanglement dynamics, and entangled spectroscopic probes, are presented. Consideration is given to the interdisciplinary nature of this emerging research and substantial ongoing progress by providing an accessible and practical treatment from fundamentals to application. Particular emphasis is placed on quantities accessible to collective measurements, including by susceptibility and spectroscopic techniques. This includes the magnetic susceptibility witness, one‐tangle, concurrence and two‐tangle, two‐site quantum discord, and quantum coherence measures such as the quantum Fisher information.
Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements. We introduce and demonstrate a novel neutron interferometry technique for extracting phase information that is typically lost in SANS measurements. An array of reference beams, with complementary structured phase profiles, are put into a coherent superposition with the array of object beams, thereby manifesting the phase information in the far-field intensity profile. We demonstrate this by resolving petal-structure signatures of helical wave interference for the first time: an implementation of the long-sought recovery of phase information from small-angle scattering measurements.
Neutron Orbital Angular Momentum (OAM) is an additional quantum mechanical degree of freedom, useful in quantum information, and may provide more complete information on the neutron scattering amplitude of nuclei. Various methods for producing OAM in neutrons have been discussed. In this work we generalize magnetic methods which employ coherent averaging and apply this to neutron interferometry. Two aluminium prisms are inserted into a nested loop interferometer to generate a phase vortex lattice with significant extrinsic OAM, 〈Lz〉 ≈ 0.35, on a length scale of ≈ 220 μm, transverse to the propagation direction. Our generalized method exploits the strong nuclear interaction, enabling a tighter lattice. Combined with recent advances in neutron compound optics and split crystal interferometry our method may be applied to generate intrinsic neutron OAM states. Finally, we assert that, in its current state, our setup is directly applicable to anisotropic ultra small angle neutron scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.