We have incorporated the spin-dependent nucleon-nucleon cross sections into a Boltzmann-Uehling-Uhlenbeck transport model for the first time, using the spin-singlet and spin-triplet nucleonnucleon elastic scattering cross sections extracted from the phase-shift analyses of nucleon-nucleon scatterings in free space. We found that the spin splitting of the collective flows is not affected by the spin-dependent cross sections, justifying it as a good probe of the in-medium nuclear spin-orbit interaction. With the in-medium nuclear spin-orbit mean-field potential that leads to local spin polarization, we found that the spin-averaged observables, such as elliptic flows of free nucleons and light clusters, becomes smaller with the spin-dependent differential nucleon-nucleon scattering cross sections.