Background and Purpose: activities-based locomotor training (AB-LT) is a restorative therapeutic approach to the treatment of movement deficits in people with non-progressive neurological conditions, including cerebral palsy (CP). Transcutaneous spinal stimulation (TSS) is an emerging tool in the rehabilitation of individuals with sensorimotor deficits caused by neurological dysfunction. This non-invasive technique delivers electrical stimulation over the spinal cord, leading to the modulation of spinal sensorimotor networks. TSS has been used in combination with AB-LT and has been shown to improve muscle activation patterns and enhance motor recovery. However, there are no published studies comparing AB-LT + TSS to AB-LT alone in children with CP. The purpose of this case study was to compare the impact of AB-LT alone versus AB-LT combined with TSS on functional movement and quality of life in a child with CP. Methods: A 13-year-old male with quadriplegic CP participated in this pilot study. He was classified in the Gross Motor Function Classification System (GMFCS) at Level III. He completed 20 sessions of AB-LT (5x/week), then a 2-week washout period, followed by 20 sessions of body-AB-LT + TSS. Treatment sessions consisted of 1 h of locomotor training with body weight support and manual facilitation and 30 min of overground play-based activities. TSS was applied using the RTI Xcite®, with stimulation at the T11 and L1 vertebral levels. Assessments including the Gross Motor Function Measure (GMFM), 10-m walk test (10 MWT), and Pediatric Balance Scale (PBS) were performed, while spatiotemporal gait parameters were assessed using the Zeno Walkway®. All assessments were performed at three time points: before and after AB-LT, as well as after AB-LT + TSS. OUTCOMES: After 19/20 sessions of AB-LT alone, the participant showed modest improvements in the GMFM scores (from 86.32 to 88), 10 MWT speed (from 1.05 m/s to 1.1 m/s), and PBS scores (from 40 to 42). Following the AB-LT combined with TSS, scores improved to an even greater extent compared with AB-LT alone, with the GMFM increasing to 93.7, 10 MWT speed to 1.43 m/s, and PBS to 44. The most significant gains were observed in the GMFM and 10 MWT. Additionally, improvements were noted across all spatiotemporal gait parameters, particularly at faster walking speeds. Perhaps most notably, the child transitioned from the GMFCS level III to level II by the end of the study. Discussion: Higher frequency and intensity interventions aimed at promoting neuroplasticity to improve movement quality in children with CP are emerging as a promising alternative to traditional physical therapy approaches. This case study highlights the potential of TSS to augment neuroplasticity-driven treatment approaches, leading to improvements in neuromotor function in children with CP. These findings suggest that TSS could be a valuable addition to rehabilitation strategies, warranting further research to explore its efficacy in larger populations.