Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule (MT) binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semi-quantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, wide spread differences are found in actin-associated proteins as compared with wild type axons. Decreases in actin-binding proteins, α-actinin-1, α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued, by full length Dcx, and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C terminal S/P rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin Like Kinase 1 (Dclk1) deficiency is consistent with actin defect as these axons are selectively deficient in axon guidance, but not elongation.